13,935 research outputs found

    On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity

    Get PDF
    We consider the free boundary problem for the evolution of a nearly straight slender fibre of viscous fluid. The motion is driven by prescribing the velocity of the ends of the fibre, and the free surface evolves under the action of surface tension, inertia and gravity. The three-dimensional Navier-Stokes equations and free-surface boundary conditions are analysed asymptotically, using the fact that the inverse aspect ratio, defined to be the ratio between a typical fibre radius and the initial fibre length, is small. This first part of the paper follows earlier work on the stretching of a slender viscous fibre with negligible surface tension effects. The inclusion of surface tension seriously complicates the problem for the evolution of the shape of the cross-section. We adapt ideas applied previously to two-dimensional Stokes flow to show that the shape of the cross-section can be described by means of a conformal map which depends on time and distance along the fibre axis. We give some examples of suitable relevant maps and present numerical solutions of the resulting equations. We also use analytic methods to examine the coupling between stretching and the evolution of the cross-section shape

    White Dwarf Cosmochronology in the Solar Neighborhood

    Get PDF
    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method which consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 < M/Msun < 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.Comment: 25 pages, 10 figures, accepted for publication in the Astrophysical Journa

    Study of low frequency hydromagnetic waves using ATS-1 data

    Get PDF
    Low frequency oscillations of the magnetic field at ATS-1 were analyzed for the 25 month data interval, Dec., 1966 through 1968. Irregular oscillations and those associated with magnetic storms were excluded from the analysis. Of the 222 events identified, 170 were found to be oscillating predominantly transverse to the background magnetic field. The oscillations were observed to occur most frequently in the early afternoon hours. They also seemed to occur more frequently during Dec., Jan., and Feb. than at any other time of the year. During a given event, the frequency was fairly constant. The event duration varied between a minimum of 10 min. and a maximum of 14 hrs and 26 min. During a given event the amplitude varied

    The Feeling of Color: A Haptic Feedback Device for the Visually Disabled

    Get PDF
    Tapson J, Gurari N, Diaz J, et al. The Feeling of Color: A Haptic Feedback Device for the Visually Disabled. Presented at the Biomedical Circuits and Systems Conference (BIOCAS), Baltimore, MD.We describe a sensory augmentation system designed to provide the visually disabled with a sense of color. Our system consists of a glove with short-range optical color sensors mounted on its fingertips, and a torso-worn belt on which tactors (haptic feedback actuators) are mounted. Each fingertip sensor detects the observed objectpsilas color. This information is encoded to the tactor through vibrations in respective locations and varying modulations. Early results suggest that detection of primary colors is possible with near 100% accuracy and moderate latency, with a minimum amount of training

    The Field White Dwarf Mass Distribution

    Get PDF
    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50% the number of massive white dwarfs (M > 0.75 Msun) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    Operator Scheduling Strategies in Supervisory Control of Multiple UAVs

    Get PDF
    The application of network centric operations to time-constrained command and control environments will mean that human operators will be increasingly responsible for multiple simultaneous supervisory control tasks. One such futuristic application will be the control of multiple unmanned aerial vehicles (UAVs) by a single operator. To achieve such performance in complex, time critical, and high risk settings, automated systems will be required both to guarantee rapid system response as well as manageable workload for operators. Through the development of a simulation test bed for human supervisory control of multiple independent UAVs by a single operator, this paper presents recent efforts to investigate workload mitigation strategies as a function of increasing automation. A humanin- the-loop experiment revealed that under low workload conditions, operators’ cognitive strategies were relatively robust across increasing levels of automated decision support. However, when provided with explicit automated recommendations and with the ability to negotiate with external agencies for delays in arrival times for targets, operators inappropriately fixated on the need to globally optimize their schedules. In addition, without explicit visual representation of uncertainty, operators tended to treated all probabilities uniformly. This study also revealed that operators that reached cognitive saturation adapted two very distinct management strategies, which led to varying degrees of success. Lastly, operators with management-by-exception decision support exhibited evidence of automation bias.This research was sponsored by Boeing Phantom Works

    The Accuracy of Perturbative Master Equations

    Full text link
    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations, and we show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.Comment: 6 pages, 0 figures; v2 updated references; v3 updated references, extension to full-time and nonlocal regime

    The early X-ray afterglows of optically bright and dark Gamma-Ray Bursts

    Full text link
    A systematical study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift has been presented. Our sample includes 25 GRBs. Among them 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (FXF_{X}), the gamma-ray fluxes (SÎłS_{\gamma}), and the ratio (RÎł,XR_{\gamma, X}) for both the D-GRBs and B-GRBs are similar. The differences of these distributions for the two kinds of GRBs should be statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are the same population. Their total energy explosions are comparable. The suppression of the optical emissions from D-GRBs should results from circumburst but not their central engine.Comment: 10 pages, 3 figures, 1 table; accepted by ChJA
    • …
    corecore